gf_unit.c 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
 * James S. Plank, Ethan L. Miller, Kevin M. Greenan,
 * Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
 *
 * gf_unit.c
 *
 * Performs unit testing for gf arithmetic
 */

#include "config.h"

#ifdef HAVE_POSIX_MEMALIGN
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif
#endif

#include <stdio.h>
#include <getopt.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>

#include "gf_complete.h"
#include "gf_int.h"
#include "gf_method.h"
#include "gf_rand.h"
#include "gf_general.h"

#define REGION_SIZE (16384)
#define RMASK (0x00000000ffffffffLL)
#define LMASK (0xffffffff00000000LL)

void problem(char *s)
{
  fprintf(stderr, "Unit test failed.\n");
  fprintf(stderr, "%s\n", s);
  exit(1);
}

char *BM = "Bad Method: ";

void usage(char *s)
{
  fprintf(stderr, "usage: gf_unit w tests seed [method] - does unit testing in GF(2^w)\n");
  fprintf(stderr, "\n");
  fprintf(stderr, "Legal w are: 1 - 32, 64 and 128\n");
  fprintf(stderr, "           128 is hex only (i.e. '128' will be an error - do '128h')\n");
  fprintf(stderr, "\n");
  fprintf(stderr, "Tests may be any combination of:\n");
  fprintf(stderr, "       A: All\n");
  fprintf(stderr, "       S: Single operations (multiplication/division)\n");
  fprintf(stderr, "       R: Region operations\n");
  fprintf(stderr, "       V: Verbose Output\n");
  fprintf(stderr, "\n");
  fprintf(stderr, "Use -1 for time(0) as a seed.\n");
  fprintf(stderr, "\n");
  if (s == BM) {
    fprintf(stderr, "%s", BM);
    gf_error();
  } else if (s != NULL) {
    fprintf(stderr, "%s\n", s);
  }
  exit(1);
}

void SigHandler(int v)
{
  fprintf(stderr, "Problem: SegFault!\n");
  fflush(stdout);
  exit(2);
}

int main(int argc, char **argv)
{
  signal(SIGSEGV, SigHandler);

  int w, i, verbose, single, region, top;
  int s_start, d_start, bytes, xor, alignment_test;
  gf_t   gf, gf_def;
  time_t t0;
  gf_internal_t *h;
  gf_general_t *a, *b, *c, *d;
  uint8_t a8, b8, c8, *mult4 = NULL, *mult8 = NULL;
  uint16_t a16, b16, c16, *log16 = NULL, *alog16 = NULL;
  char as[50], bs[50], cs[50], ds[50];
  uint32_t mask = 0;
  char *ra, *rb, *rc, *rd, *target;
  int align;
#ifndef HAVE_POSIX_MEMALIGN
  char *malloc_ra, *malloc_rb, *malloc_rc, *malloc_rd;
#endif


  if (argc < 4) usage(NULL);

  if (sscanf(argv[1], "%d", &w) == 0){
    usage("Bad w\n");
  }

  if (sscanf(argv[3], "%ld", &t0) == 0) usage("Bad seed\n");
  if (t0 == -1) t0 = time(0);
  MOA_Seed(t0);

  if (w > 32 && w != 64 && w != 128) usage("Bad w");

  if (create_gf_from_argv(&gf, w, argc, argv, 4) == 0) {
    usage(BM);
  }

  printf("Args: ");
  for (i = 1; i < argc; i++) {
    printf ("%s ", argv[i]);
  }
  printf("/ size (bytes): %d\n", gf_size(&gf));

  for (i = 0; i < strlen(argv[2]); i++) {
    if (strchr("ASRV", argv[2][i]) == NULL) usage("Bad test\n");
  }

  h = (gf_internal_t *) gf.scratch;
  a = (gf_general_t *) malloc(sizeof(gf_general_t));
  b = (gf_general_t *) malloc(sizeof(gf_general_t));
  c = (gf_general_t *) malloc(sizeof(gf_general_t));
  d = (gf_general_t *) malloc(sizeof(gf_general_t));

#if HAVE_POSIX_MEMALIGN
  if (posix_memalign((void **) &ra, 16, sizeof(char)*REGION_SIZE))
    ra = NULL;
  if (posix_memalign((void **) &rb, 16, sizeof(char)*REGION_SIZE))
    rb = NULL;
  if (posix_memalign((void **) &rc, 16, sizeof(char)*REGION_SIZE))
    rc = NULL;
  if (posix_memalign((void **) &rd, 16, sizeof(char)*REGION_SIZE))
    rd = NULL;
#else
  //15 bytes extra to make sure it's 16byte aligned
  malloc_ra = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  malloc_rb = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  malloc_rc = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  malloc_rd = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  ra = (uint8_t *) (((uintptr_t) malloc_ra + 15) & ~((uintptr_t) 0xf));
  rb = (uint8_t *) (((uintptr_t) malloc_rb + 15) & ~((uintptr_t) 0xf));
  rc = (uint8_t *) (((uintptr_t) malloc_rc + 15) & ~((uintptr_t) 0xf));
  rd = (uint8_t *) (((uintptr_t) malloc_rd + 15) & ~((uintptr_t) 0xf));
#endif

  if (w <= 32) {
    mask = 0;
    for (i = 0; i < w; i++) mask |= (1 << i);
  }

  verbose = (strchr(argv[2], 'V') != NULL);
  single = (strchr(argv[2], 'S') != NULL || strchr(argv[2], 'A') != NULL);
  region = (strchr(argv[2], 'R') != NULL || strchr(argv[2], 'A') != NULL);

  if (!gf_init_hard(&gf_def, w, GF_MULT_DEFAULT, GF_REGION_DEFAULT, GF_DIVIDE_DEFAULT,
      (h->mult_type != GF_MULT_COMPOSITE) ? h->prim_poly : 0, 0, 0, NULL, NULL))
    problem("No default for this value of w");

  if (w == 4) {
    mult4 = gf_w4_get_mult_table(&gf);
  } else if (w == 8) {
    mult8 = gf_w8_get_mult_table(&gf);
  } else if (w == 16) {
    log16 = gf_w16_get_log_table(&gf);
    alog16 = gf_w16_get_mult_alog_table(&gf);
  }

  if (verbose) printf("Seed: %ld\n", t0);

  if (single) {
    
    if (gf.multiply.w32 == NULL) problem("No multiplication operation defined.");
    if (verbose) { printf("Testing single multiplications/divisions.\n"); fflush(stdout); }
    if (w <= 10) {
      top = (1 << w)*(1 << w);
    } else {
      top = 1024*1024;
    }
    for (i = 0; i < top; i++) {
      if (w <= 10) {
        a->w32 = i % (1 << w);
        b->w32 = (i >> w);

      //Allen: the following conditions were being run 10 times each. That didn't seem like nearly enough to
      //me for these special cases, so I converted to doing this mod stuff to easily make the number of times
      //run both larger and proportional to the total size of the run.
      } else {
        switch (i % 32)
        {
          case 0: 
            gf_general_set_zero(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 1:
            gf_general_set_random(a, w, 1);
            gf_general_set_zero(b, w);
            break;
          case 2:
            gf_general_set_one(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 3:
            gf_general_set_random(a, w, 1);
            gf_general_set_one(b, w);
            break;
          default:
            gf_general_set_random(a, w, 1);
            gf_general_set_random(b, w, 1);
        }
      }

      //Allen: the following special cases for w=64 are based on the code below for w=128.
      //These w=64 cases are based on Dr. Plank's suggestion because some of the methods for w=64
      //involve splitting it in two. I think they're less likely to give errors than the 128-bit case
      //though, because the 128 bit case is always split in two.
      //As with w=128, I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 64) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; break;
          case 1: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; break;
          case 2: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 3: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 4: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 5: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 6: if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 7: if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
        }
      }

      //Allen: for w=128, we have important special cases where one half or the other of the number is all
      //zeros. The probability of hitting such a number randomly is 1^-64, so if we don't force these cases
      //we'll probably never hit them. This could be implemented more efficiently by changing the set-random
      //function for w=128, but I think this is easier to follow.
      //I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 128) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w128[0] = 0; break;
          case 1: if (!gf_general_is_one(a, w)) a->w128[1] = 0; break;
          case 2: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 3: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 4: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 5: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 6: if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 7: if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
        }
      }

      gf_general_multiply(&gf, a, b, c);
      
      /* If w is 4, 8 or 16, then there are inline multiplication/division methods.  
         Test them here. */

      if (w == 4 && mult4 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W4_INLINE_MULTDIV(mult4, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 8 && mult8 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W8_INLINE_MULTDIV(mult8, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 16 && log16 != NULL) {
        a16 = a->w32;
        b16 = b->w32;
        c16 = GF_W16_INLINE_MULT(log16, alog16, a16, b16);
        if (c16 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a16, b16, c16, c->w32);
          printf("%d %d\n", log16[a16], log16[b16]);
          top = log16[a16] + log16[b16];
          printf("%d %d\n", top, alog16[top]);
          exit(1);
        }
      }

      /* If this is not composite, then first test against the default: */

      if (h->mult_type != GF_MULT_COMPOSITE) {
        gf_general_multiply(&gf_def, a, b, d);

        if (!gf_general_are_equal(c, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s\n", as, bs, cs);
          printf("  The default gf multiplier returned %s\n", ds);
          exit(1);
        }
      }

      /* Now, we also need to double-check by other means, in case the default is wanky, 
         and when we're performing composite operations. Start with 0 and 1, where we know
         what the result should be. */

      if (gf_general_is_zero(a, w) || gf_general_is_zero(b, w) || 
          gf_general_is_one(a, w)  || gf_general_is_one(b, w)) {
        if (((gf_general_is_zero(a, w) || gf_general_is_zero(b, w)) && !gf_general_is_zero(c, w)) ||
            (gf_general_is_one(a, w) && !gf_general_are_equal(b, c, w)) ||
            (gf_general_is_one(b, w) && !gf_general_are_equal(a, c, w))) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, which is clearly wrong.\n", as, bs, cs);
          exit(1);
        }
      }

      /* Dumb check to make sure that it's not returning numbers that are too big: */

      if (w < 32 && (c->w32 & mask) != c->w32) {
        gf_general_val_to_s(a, w, as, 1);
        gf_general_val_to_s(b, w, bs, 1);
        gf_general_val_to_s(c, w, cs, 1);
        printf("Error in single multiplication (all numbers in hex):\n\n");
        printf("  gf.multiply.w32(gf, %s, %s) = %s, which is too big.\n", as, bs, cs);
        exit(1);
      }

      /* Finally, let's check to see that multiplication and division work together */

      if (!gf_general_is_zero(a, w)) {
        gf_general_divide(&gf, c, a, d);
        if (!gf_general_are_equal(b, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication/division (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, but gf.divide(gf, %s, %s) = %s\n", as, bs, cs, cs, as, ds);
          exit(1);
        }
      }

    }
  }

  if (region) {
    if (verbose) { printf("Testing region multiplications\n"); fflush(stdout); }
    for (i = 0; i < 1024; i++) {
      //Allen: changing to a switch thing as with the single ops to make things proportional
      switch (i % 32)
      {
        case 0:
          gf_general_set_zero(a, w);
          break;
        case 1:
          gf_general_set_one(a, w);
          break;
        case 2:
          gf_general_set_two(a, w);
          break;
        default:
          gf_general_set_random(a, w, 1);
      }
      MOA_Fill_Random_Region(ra, REGION_SIZE);
      MOA_Fill_Random_Region(rb, REGION_SIZE);
      xor = (i/32)%2;
      align = w/8;
      if (align == 0) align = 1;
      if (align > 16) align = 16;

      /* JSP - Cauchy test.  When w < 32 & it doesn't equal 4, 8 or 16, the default is
         equal to GF_REGION_CAUCHY, even if GF_REGION_CAUCHY is not set. We are testing
         three alignments here:

         1. Anything goes -- no alignment guaranteed.
         2. Perfect alignment.  Here src and dest must be aligned wrt each other,
            and bytes must be a multiple of 16*w.  
         3. Imperfect alignment.  Here we'll have src and dest be aligned wrt each 
            other, but bytes is simply a multiple of w.  That means some XOR's will
            be aligned, and some won't.
       */

      if ((h->region_type & GF_REGION_CAUCHY) || (w < 32 && w != 4 && w != 8 && w != 16)) {
        alignment_test = (i%3);
        
        s_start = MOA_Random_W(5, 1);
        if (alignment_test == 0) {
          d_start = MOA_Random_W(5, 1);
        } else {
          d_start = s_start;
        }

        bytes = (d_start > s_start) ? REGION_SIZE - d_start : REGION_SIZE - s_start;
        bytes -= MOA_Random_W(5, 1);
        if (alignment_test == 1) {
          bytes -= (bytes % (w*16));
        } else {
          bytes -= (bytes % w);
        }

        target = rb;
 
      /* JSP - Otherwise, we're testing a non-cauchy test, and alignment
        must be more strict.  We have to make sure that the regions are
        aligned wrt each other on 16-byte pointers.  */

      } else {
        s_start = MOA_Random_W(5, 1) * align;
        d_start = s_start;
        bytes = REGION_SIZE - s_start - MOA_Random_W(5, 1);
        bytes -= (bytes % align);

        if (h->mult_type == GF_MULT_COMPOSITE && (h->region_type & GF_REGION_ALTMAP)) {
          target = rb ;
        } else {
          target = (i/64)%2 ? rb : ra;
        }
      }

      memcpy(rc, ra, REGION_SIZE);
      memcpy(rd, target, REGION_SIZE);
      gf_general_do_region_multiply(&gf, a, ra+s_start, target+d_start, bytes, xor);
      gf_general_do_region_check(&gf, a, rc+s_start, rd+d_start, target+d_start, bytes, xor);
    }
  }

  free(a);
  free(b);
  free(c);
  free(d);
#ifdef HAVE_POSIX_MEMALIGN
  free(ra);
  free(rb);
  free(rc);
  free(rd);
#else
  free(malloc_ra);
  free(malloc_rb);
  free(malloc_rc);
  free(malloc_rd);
#endif
  
  return 0;
}