Blame view

src/gf_w4.c 50.9 KB
 `1` ``````/* `````` ```2 3 4 5``` `````` * GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic * James S. Plank, Ethan L. Miller, Kevin M. Greenan, * Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride. * `````` ```6 7 8 9 10 11 12 13``` `````` * gf_w4.c * * Routines for 4-bit Galois fields */ #include "gf_int.h" #include #include `````` `14` ``````#include "gf_w4.h" `````` `15` `````` `````` ```16 17 18 19 20 21 22``` ``````#define AB2(ip, am1 ,am2, b, t1, t2) {\ t1 = (b << 1) & am1;\ t2 = b & am2; \ t2 = ((t2 << 1) - (t2 >> (GF_FIELD_WIDTH-1))); \ b = (t1 ^ (t2 & ip));} // ToDo(KMG/JSP): Why is 0x88 hard-coded? `````` `23` ``````#define SSE_AB2(pp, m1, va, t1, t2) {\ `````` `24` `````` t1 = _mm_and_si128(_mm_slli_epi64(va, 1), m1); \ `````` ```25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66``` `````` t2 = _mm_and_si128(va, _mm_set1_epi8(0x88)); \ t2 = _mm_sub_epi64 (_mm_slli_epi64(t2, 1), _mm_srli_epi64(t2, (GF_FIELD_WIDTH-1))); \ va = _mm_xor_si128(t1, _mm_and_si128(t2, pp)); } /* ------------------------------------------------------------ JSP: These are basic and work from multiple implementations. */ static inline gf_val_32_t gf_w4_inverse_from_divide (gf_t *gf, gf_val_32_t a) { return gf->divide.w32(gf, 1, a); } static inline gf_val_32_t gf_w4_divide_from_inverse (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { b = gf->inverse.w32(gf, b); return gf->multiply.w32(gf, a, b); } static inline gf_val_32_t gf_w4_euclid (gf_t *gf, gf_val_32_t b) { gf_val_32_t e_i, e_im1, e_ip1; gf_val_32_t d_i, d_im1, d_ip1; gf_val_32_t y_i, y_im1, y_ip1; gf_val_32_t c_i; if (b == 0) return -1; e_im1 = ((gf_internal_t *) (gf->scratch))->prim_poly; e_i = b; d_im1 = 4; for (d_i = d_im1; ((1 << d_i) & e_i) == 0; d_i--) ; y_i = 1; y_im1 = 0; while (e_i != 1) { e_ip1 = e_im1; `````` ```67 68 69 70 71 72 73``` `````` d_ip1 = d_im1; c_i = 0; while (d_ip1 >= d_i) { c_i ^= (1 << (d_ip1 - d_i)); e_ip1 ^= (e_i << (d_ip1 - d_i)); if (e_ip1 == 0) return 0; `````` `74` `````` while ((e_ip1 & (1 << d_ip1)) == 0) d_ip1--; `````` ```75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112``` `````` } y_ip1 = y_im1 ^ gf->multiply.w32(gf, c_i, y_i); y_im1 = y_i; y_i = y_ip1; e_im1 = e_i; d_im1 = d_i; e_i = e_ip1; d_i = d_ip1; } return y_i; } static gf_val_32_t gf_w4_extract_word(gf_t *gf, void *start, int bytes, int index) { uint8_t *r8, v; r8 = (uint8_t *) start; v = r8[index/2]; if (index%2) { return v >> 4; } else { return v&0xf; } } static inline gf_val_32_t gf_w4_matrix (gf_t *gf, gf_val_32_t b) { return gf_bitmatrix_inverse(b, 4, ((gf_internal_t *) (gf->scratch))->prim_poly); } `````` ```113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137``` ``````static inline gf_val_32_t gf_w4_shift_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { uint8_t product, i, pp; gf_internal_t *h; h = (gf_internal_t *) gf->scratch; pp = h->prim_poly; product = 0; for (i = 0; i < GF_FIELD_WIDTH; i++) { if (a & (1 << i)) product ^= (b << i); } for (i = (GF_FIELD_WIDTH*2-2); i >= GF_FIELD_WIDTH; i--) { if (product & (1 << i)) product ^= (pp << (i-GF_FIELD_WIDTH)); } return product; } /* Ben: This function works, but it is 33% slower than the normal shift mult */ static `````` `138` ``````inline `````` ```139 140 141 142 143 144 145``` ``````gf_val_32_t gf_w4_clm_multiply (gf_t *gf, gf_val_32_t a4, gf_val_32_t b4) { gf_val_32_t rv = 0; #if defined(INTEL_SSE4_PCLMUL) `````` ```146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175``` `````` __m128i a, b; __m128i result; __m128i prim_poly; __m128i w; gf_internal_t * h = gf->scratch; a = _mm_insert_epi32 (_mm_setzero_si128(), a4, 0); b = _mm_insert_epi32 (a, b4, 0); prim_poly = _mm_set_epi32(0, 0, 0, (uint32_t)(h->prim_poly & 0x1fULL)); /* Do the initial multiply */ result = _mm_clmulepi64_si128 (a, b, 0); /* Ben/JSP: Do prim_poly reduction once. We are guaranteed that we will only have to do the reduction only once, because (w-2)/z == 1. Where z is equal to the number of zeros after the leading 1. _mm_clmulepi64_si128 is the carryless multiply operation. Here _mm_srli_epi64 shifts the result to the right by 4 bits. This allows us to multiply the prim_poly by the leading bits of the result. We then xor the result of that operation back with the result. */ w = _mm_clmulepi64_si128 (prim_poly, _mm_srli_epi64 (result, 4), 0); result = _mm_xor_si128 (result, w); /* Extracts 32 bit value from result. */ rv = ((gf_val_32_t)_mm_extract_epi32(result, 0)); `````` ```176 177``` ``````#endif return rv; `````` `178` ``````} `````` ```179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215``` `````` static void gf_w4_multiply_region_from_single(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { gf_region_data rd; uint8_t *s8; uint8_t *d8; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 1); gf_do_initial_region_alignment(&rd); s8 = (uint8_t *) rd.s_start; d8 = (uint8_t *) rd.d_start; if (xor) { while (d8 < ((uint8_t *) rd.d_top)) { *d8 ^= (gf->multiply.w32(gf, val, (*s8 & 0xf)) | ((gf->multiply.w32(gf, val, (*s8 >> 4))) << 4)); d8++; s8++; } } else { while (d8 < ((uint8_t *) rd.d_top)) { *d8 = (gf->multiply.w32(gf, val, (*s8 & 0xf)) | ((gf->multiply.w32(gf, val, (*s8 >> 4))) << 4)); d8++; s8++; } } gf_do_final_region_alignment(&rd); } `````` ```216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261``` ``````/* ------------------------------------------------------------ IMPLEMENTATION: LOG_TABLE: JSP: This is a basic log-antilog implementation. I'm not going to spend any time optimizing it because the other techniques are faster for both single and region operations. */ static inline gf_val_32_t gf_w4_log_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_logtable_data *ltd; ltd = (struct gf_logtable_data *) ((gf_internal_t *) (gf->scratch))->private; return (a == 0 || b == 0) ? 0 : ltd->antilog_tbl[(unsigned)(ltd->log_tbl[a] + ltd->log_tbl[b])]; } static inline gf_val_32_t gf_w4_log_divide (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { int log_sum = 0; struct gf_logtable_data *ltd; if (a == 0 || b == 0) return 0; ltd = (struct gf_logtable_data *) ((gf_internal_t *) (gf->scratch))->private; log_sum = ltd->log_tbl[a] - ltd->log_tbl[b]; return (ltd->antilog_tbl_div[log_sum]); } static void gf_w4_log_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { int i; uint8_t lv, b, c; uint8_t *s8, *d8; struct gf_logtable_data *ltd; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } `````` `262` `````` if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } `````` ```263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289``` `````` ltd = (struct gf_logtable_data *) ((gf_internal_t *) (gf->scratch))->private; s8 = (uint8_t *) src; d8 = (uint8_t *) dest; lv = ltd->log_tbl[val]; for (i = 0; i < bytes; i++) { c = (xor) ? d8[i] : 0; b = (s8[i] >> GF_FIELD_WIDTH); c ^= (b == 0) ? 0 : (ltd->antilog_tbl[lv + ltd->log_tbl[b]] << GF_FIELD_WIDTH); b = (s8[i] & 0xf); c ^= (b == 0) ? 0 : ltd->antilog_tbl[lv + ltd->log_tbl[b]]; d8[i] = c; } } static int gf_w4_log_init(gf_t *gf) { gf_internal_t *h; struct gf_logtable_data *ltd; int i, b; h = (gf_internal_t *) gf->scratch; ltd = h->private; `````` ```290 291``` `````` for (i = 0; i < GF_FIELD_SIZE; i++) ltd->log_tbl[i]=0; `````` ```292 293 294``` `````` ltd->antilog_tbl_div = ltd->antilog_tbl + (GF_FIELD_SIZE-1); b = 1; `````` ```295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311``` `````` i = 0; do { if (ltd->log_tbl[b] != 0 && i != 0) { fprintf(stderr, "Cannot construct log table: Polynomial is not primitive.\n\n"); return 0; } ltd->log_tbl[b] = i; ltd->antilog_tbl[i] = b; ltd->antilog_tbl[i+GF_FIELD_SIZE-1] = b; b <<= 1; i++; if (b & GF_FIELD_SIZE) b = b ^ h->prim_poly; } while (b != 1); if (i != GF_FIELD_SIZE - 1) { _gf_errno = GF_E_LOGPOLY; return 0; `````` ```312 313``` `````` } `````` ```314 315 316 317``` `````` gf->inverse.w32 = gf_w4_inverse_from_divide; gf->divide.w32 = gf_w4_log_divide; gf->multiply.w32 = gf_w4_log_multiply; gf->multiply_region.w32 = gf_w4_log_multiply_region; `````` ```318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357``` `````` return 1; } /* ------------------------------------------------------------ IMPLEMENTATION: SINGLE TABLE: JSP. */ static inline gf_val_32_t gf_w4_single_table_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_single_table_data *std; std = (struct gf_single_table_data *) ((gf_internal_t *) (gf->scratch))->private; return std->mult[a][b]; } static inline gf_val_32_t gf_w4_single_table_divide (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_single_table_data *std; std = (struct gf_single_table_data *) ((gf_internal_t *) (gf->scratch))->private; return std->div[a][b]; } static void gf_w4_single_table_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { int i; uint8_t b, c; uint8_t *s8, *d8; struct gf_single_table_data *std; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } `````` `358` `````` if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } `````` ```359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375``` `````` std = (struct gf_single_table_data *) ((gf_internal_t *) (gf->scratch))->private; s8 = (uint8_t *) src; d8 = (uint8_t *) dest; for (i = 0; i < bytes; i++) { c = (xor) ? d8[i] : 0; b = (s8[i] >> GF_FIELD_WIDTH); c ^= (std->mult[val][b] << GF_FIELD_WIDTH); b = (s8[i] & 0xf); c ^= (std->mult[val][b]); d8[i] = c; } } #define MM_PRINT(s, r) { uint8_t blah[16]; printf("%-12s", s); _mm_storeu_si128((__m128i *)blah, r); for (i = 0; i < 16; i++) printf(" %02x", blah[i]); printf("\n"); } `````` `376` ``````#ifdef INTEL_SSSE3 `````` ```377 378 379 380``` ``````static void gf_w4_single_table_sse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { `````` ```381 382``` `````` gf_region_data rd; uint8_t *base, *sptr, *dptr, *top; `````` `383` `````` __m128i tl, loset, r, va, th; `````` ```384 385 386 387``` `````` struct gf_single_table_data *std; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } `````` `388` `````` if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } `````` ```389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421``` `````` gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); std = (struct gf_single_table_data *) ((gf_internal_t *) (gf->scratch))->private; base = (uint8_t *) std->mult; base += (val << GF_FIELD_WIDTH); gf_do_initial_region_alignment(&rd); tl = _mm_loadu_si128((__m128i *)base); th = _mm_slli_epi64(tl, 4); loset = _mm_set1_epi8 (0x0f); sptr = rd.s_start; dptr = rd.d_start; top = rd.s_top; while (sptr < (uint8_t *) top) { va = _mm_load_si128 ((__m128i *)(sptr)); r = _mm_and_si128 (loset, va); r = _mm_shuffle_epi8 (tl, r); va = _mm_srli_epi64 (va, 4); va = _mm_and_si128 (loset, va); va = _mm_shuffle_epi8 (th, va); r = _mm_xor_si128 (r, va); va = (xor) ? _mm_load_si128 ((__m128i *)(dptr)) : _mm_setzero_si128(); r = _mm_xor_si128 (r, va); _mm_store_si128 ((__m128i *)(dptr), r); dptr += 16; sptr += 16; } gf_do_final_region_alignment(&rd); `````` `422` ``````} `````` `423` ``````#endif `````` ```424 425 426 427 428 429``` `````` static int gf_w4_single_table_init(gf_t *gf) { gf_internal_t *h; struct gf_single_table_data *std; `````` `430` `````` int a, b, prod; `````` `431` `````` `````` ```432 433 434 435``` `````` h = (gf_internal_t *) gf->scratch; std = (struct gf_single_table_data *)h->private; `````` ```436 437 438 439``` `````` bzero(std->mult, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); bzero(std->div, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); for (a = 1; a < GF_FIELD_SIZE; a++) { `````` `440` `````` for (b = 1; b < GF_FIELD_SIZE; b++) { `````` `441` `````` prod = gf_w4_shift_multiply(gf, a, b); `````` ```442 443 444 445 446``` `````` std->mult[a][b] = prod; std->div[prod][b] = a; } } `````` ```447 448 449``` `````` gf->inverse.w32 = NULL; gf->divide.w32 = gf_w4_single_table_divide; gf->multiply.w32 = gf_w4_single_table_multiply; `````` ```450 451``` `````` #if defined(INTEL_SSSE3) || defined(ARM_NEON) if(h->region_type & (GF_REGION_NOSIMD | GF_REGION_CAUCHY)) `````` `452` `````` gf->multiply_region.w32 = gf_w4_single_table_multiply_region; `````` ```453 454 455``` `````` else #if defined(INTEL_SSSE3) gf->multiply_region.w32 = gf_w4_single_table_sse_multiply_region; `````` `456` `````` #elif defined(ARM_NEON) `````` ```457 458 459 460 461 462``` `````` gf_w4_neon_single_table_init(gf); #endif #else gf->multiply_region.w32 = gf_w4_single_table_multiply_region; if (h->region_type & GF_REGION_SIMD) return 0; #endif `````` ```463 464``` `````` return 1; `````` ```465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497``` ``````} /* ------------------------------------------------------------ IMPLEMENTATION: DOUBLE TABLE: JSP. */ static inline gf_val_32_t gf_w4_double_table_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_double_table_data *std; std = (struct gf_double_table_data *) ((gf_internal_t *) (gf->scratch))->private; return std->mult[a][b]; } static inline gf_val_32_t gf_w4_double_table_divide (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_double_table_data *std; std = (struct gf_double_table_data *) ((gf_internal_t *) (gf->scratch))->private; return std->div[a][b]; } static void gf_w4_double_table_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { int i; `````` ```498 499 500 501 502 503``` `````` uint8_t *s8, *d8, *base; gf_region_data rd; struct gf_double_table_data *std; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } `````` `504` `````` `````` ```505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525``` `````` gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 8); std = (struct gf_double_table_data *) ((gf_internal_t *) (gf->scratch))->private; s8 = (uint8_t *) src; d8 = (uint8_t *) dest; base = (uint8_t *) std->mult; base += (val << GF_DOUBLE_WIDTH); if (xor) { for (i = 0; i < bytes; i++) d8[i] ^= base[s8[i]]; } else { for (i = 0; i < bytes; i++) d8[i] = base[s8[i]]; } } static int gf_w4_double_table_init(gf_t *gf) { gf_internal_t *h; struct gf_double_table_data *std; int a, b, c, prod, ab; `````` `526` `````` uint8_t mult[GF_FIELD_SIZE][GF_FIELD_SIZE]; `````` ```527 528 529 530 531``` `````` h = (gf_internal_t *) gf->scratch; std = (struct gf_double_table_data *)h->private; bzero(mult, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); `````` ```532 533 534 535``` `````` bzero(std->div, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); for (a = 1; a < GF_FIELD_SIZE; a++) { for (b = 1; b < GF_FIELD_SIZE; b++) { `````` `536` `````` prod = gf_w4_shift_multiply(gf, a, b); `````` `537` `````` mult[a][b] = prod; `````` ```538 539 540 541 542 543 544 545 546 547 548 549 550 551``` `````` std->div[prod][b] = a; } } bzero(std->mult, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE * GF_FIELD_SIZE); for (a = 0; a < GF_FIELD_SIZE; a++) { for (b = 0; b < GF_FIELD_SIZE; b++) { ab = mult[a][b]; for (c = 0; c < GF_FIELD_SIZE; c++) { std->mult[a][(b << 4) | c] = ((ab << 4) | mult[a][c]); } } } gf->inverse.w32 = NULL; `````` ```552 553 554 555``` `````` gf->divide.w32 = gf_w4_double_table_divide; gf->multiply.w32 = gf_w4_double_table_multiply; gf->multiply_region.w32 = gf_w4_double_table_multiply_region; return 1; `````` ```556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617``` ``````} static inline gf_val_32_t gf_w4_quad_table_lazy_divide (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_quad_table_lazy_data *std; std = (struct gf_quad_table_lazy_data *) ((gf_internal_t *) (gf->scratch))->private; return std->div[a][b]; } static inline gf_val_32_t gf_w4_quad_table_lazy_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_quad_table_lazy_data *std; std = (struct gf_quad_table_lazy_data *) ((gf_internal_t *) (gf->scratch))->private; return std->smult[a][b]; } static inline gf_val_32_t gf_w4_quad_table_divide (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_quad_table_data *std; std = (struct gf_quad_table_data *) ((gf_internal_t *) (gf->scratch))->private; return std->div[a][b]; } static inline gf_val_32_t gf_w4_quad_table_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { struct gf_quad_table_data *std; uint16_t v; std = (struct gf_quad_table_data *) ((gf_internal_t *) (gf->scratch))->private; v = std->mult[a][b]; return v; } static void gf_w4_quad_table_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { uint16_t *base; gf_region_data rd; struct gf_quad_table_data *std; struct gf_quad_table_lazy_data *ltd; gf_internal_t *h; int a, b, c, d, va, vb, vc, vd; if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } `````` `618` `````` `````` ```619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652``` `````` h = (gf_internal_t *) (gf->scratch); if (h->region_type & GF_REGION_LAZY) { ltd = (struct gf_quad_table_lazy_data *) ((gf_internal_t *) (gf->scratch))->private; base = ltd->mult; for (a = 0; a < 16; a++) { va = (ltd->smult[val][a] << 12); for (b = 0; b < 16; b++) { vb = (ltd->smult[val][b] << 8); for (c = 0; c < 16; c++) { vc = (ltd->smult[val][c] << 4); for (d = 0; d < 16; d++) { vd = ltd->smult[val][d]; base[(a << 12) | (b << 8) | (c << 4) | d ] = (va | vb | vc | vd); } } } } } else { std = (struct gf_quad_table_data *) ((gf_internal_t *) (gf->scratch))->private; base = &(std->mult[val][0]); } gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 8); gf_do_initial_region_alignment(&rd); gf_two_byte_region_table_multiply(&rd, base); gf_do_final_region_alignment(&rd); } static int gf_w4_quad_table_init(gf_t *gf) { gf_internal_t *h; struct gf_quad_table_data *std; int prod, val, a, b, c, d, va, vb, vc, vd; `````` `653` `````` uint8_t mult[GF_FIELD_SIZE][GF_FIELD_SIZE]; `````` ```654 655 656 657 658``` `````` h = (gf_internal_t *) gf->scratch; std = (struct gf_quad_table_data *)h->private; bzero(mult, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); `````` ```659 660 661 662``` `````` bzero(std->div, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); for (a = 1; a < GF_FIELD_SIZE; a++) { for (b = 1; b < GF_FIELD_SIZE; b++) { `````` `663` `````` prod = gf_w4_shift_multiply(gf, a, b); `````` `664` `````` mult[a][b] = prod; `````` ```665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685``` `````` std->div[prod][b] = a; } } for (val = 0; val < 16; val++) { for (a = 0; a < 16; a++) { va = (mult[val][a] << 12); for (b = 0; b < 16; b++) { vb = (mult[val][b] << 8); for (c = 0; c < 16; c++) { vc = (mult[val][c] << 4); for (d = 0; d < 16; d++) { vd = mult[val][d]; std->mult[val][(a << 12) | (b << 8) | (c << 4) | d ] = (va | vb | vc | vd); } } } } } gf->inverse.w32 = NULL; `````` ```686 687 688 689``` `````` gf->divide.w32 = gf_w4_quad_table_divide; gf->multiply.w32 = gf_w4_quad_table_multiply; gf->multiply_region.w32 = gf_w4_quad_table_multiply_region; return 1; `````` ```690 691 692 693 694 695 696``` ``````} static int gf_w4_quad_table_lazy_init(gf_t *gf) { gf_internal_t *h; struct gf_quad_table_lazy_data *std; int a, b, prod, loga, logb; `````` `697` `````` uint8_t log_tbl[GF_FIELD_SIZE]; `````` ```698 699``` `````` uint8_t antilog_tbl[GF_FIELD_SIZE*2]; `````` ```700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727``` `````` h = (gf_internal_t *) gf->scratch; std = (struct gf_quad_table_lazy_data *)h->private; b = 1; for (a = 0; a < GF_MULT_GROUP_SIZE; a++) { log_tbl[b] = a; antilog_tbl[a] = b; antilog_tbl[a+GF_MULT_GROUP_SIZE] = b; b <<= 1; if (b & GF_FIELD_SIZE) { b = b ^ h->prim_poly; } } bzero(std->smult, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); bzero(std->div, sizeof(uint8_t) * GF_FIELD_SIZE * GF_FIELD_SIZE); for (a = 1; a < GF_FIELD_SIZE; a++) { loga = log_tbl[a]; for (b = 1; b < GF_FIELD_SIZE; b++) { logb = log_tbl[b]; prod = antilog_tbl[loga+logb]; std->smult[a][b] = prod; std->div[prod][b] = a; } } gf->inverse.w32 = NULL; `````` ```728 729 730 731``` `````` gf->divide.w32 = gf_w4_quad_table_lazy_divide; gf->multiply.w32 = gf_w4_quad_table_lazy_multiply; gf->multiply_region.w32 = gf_w4_quad_table_multiply_region; return 1; `````` ```732 733 734 735 736 737 738 739``` ``````} static int gf_w4_table_init(gf_t *gf) { int rt; gf_internal_t *h; int simd = 0; `````` ```740 741 742``` `````` #if defined(INTEL_SSSE3) || defined(ARM_NEON) simd = 1; `````` `743` ``````#endif `````` ```744 745 746``` `````` h = (gf_internal_t *) gf->scratch; rt = (h->region_type); `````` ```747 748``` `````` if (h->mult_type == GF_MULT_DEFAULT && !simd) rt |= GF_REGION_DOUBLE_TABLE; `````` ```749 750 751 752 753 754 755``` `````` if (rt & GF_REGION_DOUBLE_TABLE) { return gf_w4_double_table_init(gf); } else if (rt & GF_REGION_QUAD_TABLE) { if (rt & GF_REGION_LAZY) { return gf_w4_quad_table_lazy_init(gf); } else { `````` ```756 757 758``` `````` return gf_w4_quad_table_init(gf); } } else { `````` ```759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828``` `````` return gf_w4_single_table_init(gf); } return 0; } /* ------------------------------------------------------------ JSP: GF_MULT_BYTWO_p and _b: See the paper. */ static inline gf_val_32_t gf_w4_bytwo_p_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { uint32_t prod, pp, pmask, amask; gf_internal_t *h; h = (gf_internal_t *) gf->scratch; pp = h->prim_poly; prod = 0; pmask = 0x8; amask = 0x8; while (amask != 0) { if (prod & pmask) { prod = ((prod << 1) ^ pp); } else { prod <<= 1; } if (a & amask) prod ^= b; amask >>= 1; } return prod; } static inline gf_val_32_t gf_w4_bytwo_b_multiply (gf_t *gf, gf_val_32_t a, gf_val_32_t b) { uint32_t prod, pp, bmask; gf_internal_t *h; h = (gf_internal_t *) gf->scratch; pp = h->prim_poly; prod = 0; bmask = 0x8; while (1) { if (a & 1) prod ^= b; a >>= 1; if (a == 0) return prod; if (b & bmask) { b = ((b << 1) ^ pp); } else { b <<= 1; } } } static void gf_w4_bytwo_p_nosse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { uint64_t *s64, *d64, t1, t2, ta, prod, amask; gf_region_data rd; struct gf_bytwo_data *btd; `````` `829` `````` `````` ```830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871``` `````` if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } btd = (struct gf_bytwo_data *) ((gf_internal_t *) (gf->scratch))->private; gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 8); gf_do_initial_region_alignment(&rd); s64 = (uint64_t *) rd.s_start; d64 = (uint64_t *) rd.d_start; if (xor) { while (s64 < (uint64_t *) rd.s_top) { prod = 0; amask = 0x8; ta = *s64; while (amask != 0) { AB2(btd->prim_poly, btd->mask1, btd->mask2, prod, t1, t2); if (val & amask) prod ^= ta; amask >>= 1; } *d64 ^= prod; d64++; s64++; } } else { while (s64 < (uint64_t *) rd.s_top) { prod = 0; amask = 0x8; ta = *s64; while (amask != 0) { AB2(btd->prim_poly, btd->mask1, btd->mask2, prod, t1, t2); if (val & amask) prod ^= ta; amask >>= 1; } *d64 = prod; d64++; s64++; } } gf_do_final_region_alignment(&rd); } `````` `872` `````` `````` ```873 874 875 876 877 878``` ``````#define BYTWO_P_ONESTEP {\ SSE_AB2(pp, m1, prod, t1, t2); \ t1 = _mm_and_si128(v, one); \ t1 = _mm_sub_epi8(t1, one); \ t1 = _mm_and_si128(t1, ta); \ prod = _mm_xor_si128(prod, t1); \ `````` `879` `````` v = _mm_srli_epi64(v, 1); } `````` ```880 881 882 883``` `````` #ifdef INTEL_SSE2 static void `````` ```884 885 886``` ``````gf_w4_bytwo_p_sse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { int i; `````` `887` `````` uint8_t *s8, *d8; `````` ```888 889 890 891``` `````` uint8_t vrev; __m128i pp, m1, ta, prod, t1, t2, tp, one, v; struct gf_bytwo_data *btd; gf_region_data rd; `````` `892` `````` `````` ```893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909``` `````` if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } btd = (struct gf_bytwo_data *) ((gf_internal_t *) (gf->scratch))->private; gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); gf_do_initial_region_alignment(&rd); vrev = 0; for (i = 0; i < 4; i++) { vrev <<= 1; if (!(val & (1 << i))) vrev |= 1; } s8 = (uint8_t *) rd.s_start; d8 = (uint8_t *) rd.d_start; `````` ```910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); one = _mm_set1_epi8(1); while (d8 < (uint8_t *) rd.d_top) { prod = _mm_setzero_si128(); v = _mm_set1_epi8(vrev); ta = _mm_load_si128((__m128i *) s8); tp = (!xor) ? _mm_setzero_si128() : _mm_load_si128((__m128i *) d8); BYTWO_P_ONESTEP; BYTWO_P_ONESTEP; BYTWO_P_ONESTEP; BYTWO_P_ONESTEP; _mm_store_si128((__m128i *) d8, _mm_xor_si128(prod, tp)); d8 += 16; s8 += 16; `````` `926` `````` } `````` `927` `````` gf_do_final_region_alignment(&rd); `````` ```928 929``` ``````} #endif `````` `930` `````` `````` ```931 932 933 934``` ``````/* static void gf_w4_bytwo_b_sse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) `````` ```935 936 937 938 939 940``` ``````{ #ifdef INTEL_SSE2 uint8_t *d8, *s8, tb; __m128i pp, m1, m2, t1, t2, va, vb; struct gf_bytwo_data *btd; gf_region_data rd; `````` `941` `````` `````` ```942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990``` `````` if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); gf_do_initial_region_alignment(&rd); s8 = (uint8_t *) rd.s_start; d8 = (uint8_t *) rd.d_start; btd = (struct gf_bytwo_data *) ((gf_internal_t *) (gf->scratch))->private; pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); m2 = _mm_set1_epi8((btd->mask2)&0xff); if (xor) { while (d8 < (uint8_t *) rd.d_top) { va = _mm_load_si128 ((__m128i *)(s8)); vb = _mm_load_si128 ((__m128i *)(d8)); tb = val; while (1) { if (tb & 1) vb = _mm_xor_si128(vb, va); tb >>= 1; if (tb == 0) break; SSE_AB2(pp, m1, m2, va, t1, t2); } _mm_store_si128((__m128i *)d8, vb); d8 += 16; s8 += 16; } } else { while (d8 < (uint8_t *) rd.d_top) { va = _mm_load_si128 ((__m128i *)(s8)); vb = _mm_setzero_si128 (); tb = val; while (1) { if (tb & 1) vb = _mm_xor_si128(vb, va); tb >>= 1; if (tb == 0) break; t1 = _mm_and_si128(_mm_slli_epi64(va, 1), m1); t2 = _mm_and_si128(va, m2); t2 = _mm_sub_epi64 ( _mm_slli_epi64(t2, 1), _mm_srli_epi64(t2, (GF_FIELD_WIDTH-1))); va = _mm_xor_si128(t1, _mm_and_si128(t2, pp)); } _mm_store_si128((__m128i *)d8, vb); d8 += 16; s8 += 16; } `````` `991` `````` } `````` `992` `````` gf_do_final_region_alignment(&rd); `````` ```993 994``` ``````#endif } `````` `995` ``````*/ `````` ```996 997 998 999``` `````` #ifdef INTEL_SSE2 static void `````` ```1000 1001``` ``````gf_w4_bytwo_b_sse_region_2_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1002 1003 1004 1005 1006 1007``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1008 1009 1010``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` `1011` `````` while (d8 < (uint8_t *) rd->d_top) { `````` ```1012 1013 1014 1015``` `````` va = _mm_load_si128 ((__m128i *)(s8)); SSE_AB2(pp, m1, va, t1, t2); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1016` `````` s8 += 16; `````` `1017` `````` } `````` `1018` ``````} `````` `1019` ``````#endif `````` ```1020 1021 1022 1023``` `````` #ifdef INTEL_SSE2 static void `````` ```1024 1025``` ``````gf_w4_bytwo_b_sse_region_2_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1026 1027 1028 1029 1030 1031``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1032 1033 1034``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` `1035` `````` while (d8 < (uint8_t *) rd->d_top) { `````` ```1036 1037 1038 1039 1040 1041``` `````` va = _mm_load_si128 ((__m128i *)(s8)); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_load_si128 ((__m128i *)(d8)); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1042` `````` s8 += 16; `````` `1043` `````` } `````` `1044` ``````} `````` `1045` ``````#endif `````` ```1046 1047 1048 1049``` `````` #ifdef INTEL_SSE2 static void `````` ```1050 1051``` ``````gf_w4_bytwo_b_sse_region_4_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1052 1053 1054 1055 1056 1057``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1058 1059 1060``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` ```1061 1062``` `````` while (d8 < (uint8_t *) rd->d_top) { va = _mm_load_si128 ((__m128i *)(s8)); `````` ```1063 1064 1065 1066``` `````` SSE_AB2(pp, m1, va, t1, t2); SSE_AB2(pp, m1, va, t1, t2); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1067` `````` s8 += 16; `````` `1068` `````` } `````` `1069` ``````} `````` `1070` ``````#endif `````` ```1071 1072 1073 1074``` `````` #ifdef INTEL_SSE2 static void `````` ```1075 1076``` ``````gf_w4_bytwo_b_sse_region_4_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1077 1078 1079 1080 1081 1082``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1083 1084 1085``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` ```1086 1087``` `````` while (d8 < (uint8_t *) rd->d_top) { va = _mm_load_si128 ((__m128i *)(s8)); `````` ```1088 1089 1090 1091 1092 1093``` `````` SSE_AB2(pp, m1, va, t1, t2); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_load_si128 ((__m128i *)(d8)); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1094` `````` s8 += 16; `````` `1095` `````` } `````` ```1096 1097``` ``````} #endif `````` `1098` `````` `````` ```1099 1100 1101 1102``` `````` #ifdef INTEL_SSE2 static void `````` ```1103 1104``` ``````gf_w4_bytwo_b_sse_region_3_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1105 1106 1107 1108 1109 1110``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1111 1112 1113 1114``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` `1115` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` ```1116 1117 1118 1119 1120``` `````` vb = va; SSE_AB2(pp, m1, va, t1, t2); va = _mm_xor_si128(va, vb); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1121` `````` s8 += 16; `````` `1122` `````` } `````` `1123` ``````} `````` `1124` ``````#endif `````` ```1125 1126 1127 1128``` `````` #ifdef INTEL_SSE2 static void `````` ```1129 1130``` ``````gf_w4_bytwo_b_sse_region_3_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1131 1132 1133 1134 1135 1136``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1137 1138 1139 1140``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` `1141` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` ```1142 1143 1144 1145 1146``` `````` vb = _mm_xor_si128(_mm_load_si128 ((__m128i *)(d8)), va); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1147` `````` s8 += 16; `````` `1148` `````` } `````` `1149` ``````} `````` `1150` ``````#endif `````` ```1151 1152 1153 1154``` `````` #ifdef INTEL_SSE2 static void `````` ```1155 1156``` ``````gf_w4_bytwo_b_sse_region_5_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1157 1158 1159 1160 1161 1162``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1163 1164 1165 1166``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` ```1167 1168``` `````` va = _mm_load_si128 ((__m128i *)(s8)); vb = va; `````` ```1169 1170 1171 1172 1173``` `````` SSE_AB2(pp, m1, va, t1, t2); SSE_AB2(pp, m1, va, t1, t2); va = _mm_xor_si128(va, vb); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1174` `````` s8 += 16; `````` `1175` `````` } `````` `1176` ``````} `````` `1177` ``````#endif `````` ```1178 1179 1180 1181``` `````` #ifdef INTEL_SSE2 static void `````` ```1182 1183``` ``````gf_w4_bytwo_b_sse_region_5_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1184 1185 1186 1187 1188 1189``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1190 1191 1192 1193``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` ```1194 1195``` `````` va = _mm_load_si128 ((__m128i *)(s8)); vb = _mm_xor_si128(_mm_load_si128 ((__m128i *)(d8)), va); `````` ```1196 1197 1198 1199 1200``` `````` SSE_AB2(pp, m1, va, t1, t2); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1201` `````` s8 += 16; `````` `1202` `````` } `````` `1203` ``````} `````` `1204` ``````#endif `````` ```1205 1206 1207 1208``` `````` #ifdef INTEL_SSE2 static void `````` ```1209 1210``` ``````gf_w4_bytwo_b_sse_region_7_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1211 1212 1213 1214 1215 1216``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1217 1218 1219 1220``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` `1221` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` `1222` `````` vb = va; `````` `1223` `````` SSE_AB2(pp, m1, va, t1, t2); `````` ```1224 1225 1226 1227 1228``` `````` vb = _mm_xor_si128(va, vb); SSE_AB2(pp, m1, va, t1, t2); va = _mm_xor_si128(va, vb); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1229` `````` s8 += 16; `````` `1230` `````` } `````` `1231` ``````} `````` `1232` ``````#endif `````` ```1233 1234 1235 1236``` `````` #ifdef INTEL_SSE2 static void `````` ```1237 1238``` ``````gf_w4_bytwo_b_sse_region_7_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1239 1240 1241 1242 1243 1244``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1245 1246 1247 1248``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); while (d8 < (uint8_t *) rd->d_top) { `````` `1249` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` `1250` `````` vb = _mm_xor_si128(_mm_load_si128 ((__m128i *)(d8)), va); `````` `1251` `````` SSE_AB2(pp, m1, va, t1, t2); `````` ```1252 1253 1254 1255 1256``` `````` vb = _mm_xor_si128(vb, va); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1257` `````` s8 += 16; `````` `1258` `````` } `````` `1259` ``````} `````` `1260` ``````#endif `````` ```1261 1262 1263 1264``` `````` #ifdef INTEL_SSE2 static void `````` ```1265 1266``` ``````gf_w4_bytwo_b_sse_region_6_noxor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1267 1268 1269 1270 1271 1272``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1273 1274 1275``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` `1276` `````` while (d8 < (uint8_t *) rd->d_top) { `````` `1277` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` `1278` `````` SSE_AB2(pp, m1, va, t1, t2); `````` ```1279 1280 1281 1282 1283``` `````` vb = va; SSE_AB2(pp, m1, va, t1, t2); va = _mm_xor_si128(va, vb); _mm_store_si128((__m128i *)d8, va); d8 += 16; `````` `1284` `````` s8 += 16; `````` `1285` `````` } `````` `1286` ``````} `````` `1287` ``````#endif `````` ```1288 1289 1290 1291``` `````` #ifdef INTEL_SSE2 static void `````` ```1292 1293``` ``````gf_w4_bytwo_b_sse_region_6_xor(gf_region_data *rd, struct gf_bytwo_data *btd) { `````` ```1294 1295 1296 1297 1298 1299``` `````` uint8_t *d8, *s8; __m128i pp, m1, t1, t2, va, vb; s8 = (uint8_t *) rd->s_start; d8 = (uint8_t *) rd->d_start; `````` ```1300 1301 1302``` `````` pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); `````` `1303` `````` while (d8 < (uint8_t *) rd->d_top) { `````` `1304` `````` va = _mm_load_si128 ((__m128i *)(s8)); `````` `1305` `````` SSE_AB2(pp, m1, va, t1, t2); `````` ```1306 1307 1308 1309 1310``` `````` vb = _mm_xor_si128(_mm_load_si128 ((__m128i *)(d8)), va); SSE_AB2(pp, m1, va, t1, t2); vb = _mm_xor_si128(vb, va); _mm_store_si128((__m128i *)d8, vb); d8 += 16; `````` `1311` `````` s8 += 16; `````` `1312` `````` } `````` `1313` ``````} `````` `1314` ``````#endif `````` ```1315 1316 1317 1318``` `````` #ifdef INTEL_SSE2 static void `````` ```1319 1320 1321 1322 1323 1324``` ``````gf_w4_bytwo_b_sse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { uint8_t *d8, *s8, tb; __m128i pp, m1, m2, t1, t2, va, vb; struct gf_bytwo_data *btd; gf_region_data rd; `````` `1325` `````` `````` ```1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398``` `````` if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); gf_do_initial_region_alignment(&rd); s8 = (uint8_t *) rd.s_start; d8 = (uint8_t *) rd.d_start; btd = (struct gf_bytwo_data *) ((gf_internal_t *) (gf->scratch))->private; switch (val) { case 2: if (!xor) { gf_w4_bytwo_b_sse_region_2_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_2_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; case 3: if (!xor) { gf_w4_bytwo_b_sse_region_3_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_3_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; case 4: if (!xor) { gf_w4_bytwo_b_sse_region_4_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_4_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; case 5: if (!xor) { gf_w4_bytwo_b_sse_region_5_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_5_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; case 6: if (!xor) { gf_w4_bytwo_b_sse_region_6_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_6_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; case 7: if (!xor) { gf_w4_bytwo_b_sse_region_7_noxor(&rd, btd); } else { gf_w4_bytwo_b_sse_region_7_xor(&rd, btd); } gf_do_final_region_alignment(&rd); return; } pp = _mm_set1_epi8(btd->prim_poly&0xff); m1 = _mm_set1_epi8((btd->mask1)&0xff); m2 = _mm_set1_epi8((btd->mask2)&0xff); if (xor) { while (d8 < (uint8_t *) rd.d_top) { va = _mm_load_si128 ((__m128i *)(s8)); vb = _mm_load_si128 ((__m128i *)(d8)); tb = val; while (1) { if (tb & 1) vb = _mm_xor_si128(vb, va); `````` `1399` `````` tb >>= 1; `````` ```1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425``` `````` if (tb == 0) break; SSE_AB2(pp, m1, va, t1, t2); } _mm_store_si128((__m128i *)d8, vb); d8 += 16; s8 += 16; } } else { while (d8 < (uint8_t *) rd.d_top) { va = _mm_load_si128 ((__m128i *)(s8)); vb = _mm_setzero_si128 (); tb = val; while (1) { if (tb & 1) vb = _mm_xor_si128(vb, va); tb >>= 1; if (tb == 0) break; t1 = _mm_and_si128(_mm_slli_epi64(va, 1), m1); t2 = _mm_and_si128(va, m2); t2 = _mm_sub_epi64 ( _mm_slli_epi64(t2, 1), _mm_srli_epi64(t2, (GF_FIELD_WIDTH-1))); va = _mm_xor_si128(t1, _mm_and_si128(t2, pp)); } _mm_store_si128((__m128i *)d8, vb); d8 += 16; s8 += 16; } `````` `1426` `````` } `````` `1427` `````` gf_do_final_region_alignment(&rd); `````` ```1428 1429 1430 1431 1432``` ``````} #endif static void `````` ```1433 1434 1435 1436 1437``` ``````gf_w4_bytwo_b_nosse_multiply_region(gf_t *gf, void *src, void *dest, gf_val_32_t val, int bytes, int xor) { uint64_t *s64, *d64, t1, t2, ta, tb, prod; struct gf_bytwo_data *btd; gf_region_data rd; `````` `1438` `````` `````` ```1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545``` `````` if (val == 0) { gf_multby_zero(dest, bytes, xor); return; } if (val == 1) { gf_multby_one(src, dest, bytes, xor); return; } gf_set_region_data(&rd, gf, src, dest, bytes, val, xor, 16); gf_do_initial_region_alignment(&rd); btd = (struct gf_bytwo_data *) ((gf_internal_t *) (gf->scratch))->private; s64 = (uint64_t *) rd.s_start; d64 = (uint64_t *) rd.d_start; switch (val) { case 1: if (xor) { while (d64 < (uint64_t *) rd.d_top) { *d64 ^= *s64; d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { *d64 = *s64; d64++; s64++; } } break; case 2: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= ta; d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta; d64++; s64++; } } break; case 3: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 4: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= ta; d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta; d64++; s64++; } } break; case 5: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta ^ prod; d64++; s64++; `````` `1546` `````` } `````` ```1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568``` `````` } break; case 6: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta ^ prod; d64++; s64++; `````` `1569` `````` } `````` ```1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865``` `````` } break; case 7: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta ^ prod; d64++; s64++; } } break; case 8: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= ta; d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = ta; d64++; s64++; } } break; case 9: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 10: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 11: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 12: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 13: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 14: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; case 15: if (xor) { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 ^= (ta ^ prod); d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { ta = *s64; prod = ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); prod ^= ta; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); *d64 = (ta ^ prod); d64++; s64++; } } break; default: if (xor) { while (d64 < (uint64_t *) rd.d_top) { prod = *d64 ; ta = *s64; tb = val; while (1) { if (tb & 1) prod ^= ta; tb >>= 1; if (tb == 0) break; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); } *d64 = prod; d64++; s64++; } } else { while (d64 < (uint64_t *) rd.d_top) { prod = 0 ; ta = *s64; tb = val; while (1) { if (tb & 1) prod ^= ta; tb >>= 1; if (tb == 0) break; AB2(btd->prim_poly, btd->mask1, btd->mask2, ta, t1, t2); } *d64 = prod; d64++; s64++; } } break; } gf_do_final_region_alignment(&rd); } static int gf_w4_bytwo_init(gf_t *gf) { gf_internal_t *h; uint64_t ip, m1, m2; struct gf_bytwo_data *btd; h = (gf_internal_t *) gf->scratch; btd = (struct gf_bytwo_data *) (h->private); ip = h->prim_poly & 0xf; m1 = 0xe; m2 = 0x8; btd->prim_poly = 0; btd->mask1 = 0; btd->mask2 = 0; while (ip != 0) { btd->prim_poly |= ip; btd->mask1 |= m1; btd->mask2 |= m2; ip <<= GF_FIELD_WIDTH; m1 <<= GF_FIELD_WIDTH; m2 <<= GF_FIELD_WIDTH; } `````` `1866` `````` `````` `1867` `````` if (h->mult_type == GF_MULT_BYTWO_p) { `````` `1868` `````` gf->multiply.w32 = gf_w4_bytwo_p_multiply; `````` `1869` `````` #ifdef INTEL_SSE2 `````` ```1870 1871 1872 1873 1874 1875 1876``` `````` if (h->region_type & GF_REGION_NOSIMD) gf->multiply_region.w32 = gf_w4_bytwo_p_nosse_multiply_region; else gf->multiply_region.w32 = gf_w4_bytwo_p_sse_multiply_region; #else gf->multiply_region.w32 = gf_w4_bytwo_p_nosse_multiply_region; if (h->region_type & GF_REGION_SIMD) `````` `1877` `````` return 0; `````` `1878` `````` #endif `````` `1879` `````` } else { `````` `1880` `````` gf->multiply.w32 = gf_w4_bytwo_b_multiply; `````` `1881` `````` #ifdef INTEL_SSE2 `````` `1882` `````` if (h->region_type & GF_REGION_NOSIMD) `````` ```1883 1884 1885 1886 1887 1888 1889``` `````` gf->multiply_region.w32 = gf_w4_bytwo_b_nosse_multiply_region; else gf->multiply_region.w32 = gf_w4_bytwo_b_sse_multiply_region; #else gf->multiply_region.w32 = gf_w4_bytwo_b_nosse_multiply_region; if (h->region_type & GF_REGION_SIMD) return 0; `````` `1890` `````` #endif `````` `1891` `````` } `````` ```1892 1893 1894 1895``` `````` return 1; } `````` ```1896 1897``` ``````static int gf_w4_cfm_init(gf_t *gf) `````` `1898` ``````{ `````` `1899` ``````#if defined(INTEL_SSE4_PCLMUL) `````` ```1900 1901 1902 1903``` `````` gf->multiply.w32 = gf_w4_clm_multiply; return 1; #elif defined(ARM_NEON) return gf_w4_neon_cfm_init(gf); `````` `1904` ``````#endif `````` ```1905 1906 1907``` `````` return 0; } `````` ```1908 1909``` ``````static int gf_w4_shift_init(gf_t *gf) `````` ```1910 1911 1912 1913 1914``` ``````{ gf->multiply.w32 = gf_w4_shift_multiply; return 1; } `````` `1915` ``````/* JSP: I'm putting all error-checking into gf_error_check(), so you don't `````` ```1916 1917 1918``` `````` have to do error checking in scratch_size or in init */ int gf_w4_scratch_size(int mult_type, int region_type, int divide_type, int arg1, int arg2) `````` ```1919 1920 1921``` ``````{ int issse3 = 0, isneon = 0; `````` ```1922 1923``` ``````#ifdef INTEL_SSSE3 issse3 = 1; `````` ```1924 1925 1926 1927``` ``````#endif #ifdef ARM_NEON isneon = 1; #endif `````` ```1928 1929``` `````` switch(mult_type) `````` `1930` `````` { `````` `1931` `````` case GF_MULT_BYTWO_p: `````` `1932` `````` case GF_MULT_BYTWO_b: `````` ```1933 1934``` `````` return sizeof(gf_internal_t) + sizeof(struct gf_bytwo_data); break; `````` `1935` `````` case GF_MULT_DEFAULT: `````` ```1936 1937``` `````` case GF_MULT_TABLE: if (region_type == GF_REGION_CAUCHY) { `````` `1938` `````` return sizeof(gf_internal_t) + sizeof(struct gf_single_table_data) + 64; `````` ```1939 1940``` `````` } `````` ```1941 1942``` `````` if (mult_type == GF_MULT_DEFAULT && !(issse3 || isneon)) region_type = GF_REGION_DOUBLE_TABLE; `````` ```1943 1944 1945 1946 1947``` `````` if (region_type & GF_REGION_DOUBLE_TABLE) { return sizeof(gf_internal_t) + sizeof(struct gf_double_table_data) + 64; } else if (region_type & GF_REGION_QUAD_TABLE) { if ((region_type & GF_REGION_LAZY) == 0) { `````` ```1948 1949``` `````` return sizeof(gf_internal_t) + sizeof(struct gf_quad_table_data) + 64; } else { `````` `1950` `````` return sizeof(gf_internal_t) + sizeof(struct gf_quad_table_lazy_data) + 64; `````` `1951` `````` } `````` `1952` `````` } else { `````` `1953` `````` return sizeof(gf_internal_t) + sizeof(struct gf_single_table_data) + 64; `````` ```1954 1955``` `````` } break; `````` ```1956 1957 1958``` `````` case GF_MULT_LOG_TABLE: return sizeof(gf_internal_t) + sizeof(struct gf_logtable_data) + 64; `````` `1959` `````` break; `````` ```1960 1961 1962``` `````` case GF_MULT_CARRY_FREE: return sizeof(gf_internal_t); break; `````` `1963` `````` case GF_MULT_SHIFT: `````` `1964` `````` return sizeof(gf_internal_t); `````` `1965` `````` break; `````` ```1966 1967 1968 1969 1970 1971 1972 1973 1974``` `````` default: return 0; } return 0; } int gf_w4_init (gf_t *gf) { `````` `1975` `````` gf_internal_t *h; `````` ```1976 1977 1978 1979 1980``` `````` h = (gf_internal_t *) gf->scratch; if (h->prim_poly == 0) h->prim_poly = 0x13; h->prim_poly |= 0x10; gf->multiply.w32 = NULL; `````` ```1981 1982``` `````` gf->divide.w32 = NULL; gf->inverse.w32 = NULL; `````` ```1983 1984``` `````` gf->multiply_region.w32 = NULL; gf->extract_word.w32 = gf_w4_extract_word; `````` `1985` `````` `````` ```1986 1987``` `````` switch(h->mult_type) { case GF_MULT_CARRY_FREE: if (gf_w4_cfm_init(gf) == 0) return 0; break; `````` `1988` `````` case GF_MULT_SHIFT: if (gf_w4_shift_init(gf) == 0) return 0; break; `````` `1989` `````` case GF_MULT_BYTWO_p: `````` ```1990 1991 1992 1993``` `````` case GF_MULT_BYTWO_b: if (gf_w4_bytwo_init(gf) == 0) return 0; break; case GF_MULT_LOG_TABLE: if (gf_w4_log_init(gf) == 0) return 0; break; case GF_MULT_DEFAULT: case GF_MULT_TABLE: if (gf_w4_table_init(gf) == 0) return 0; break; `````` ```1994 1995``` `````` default: return 0; } `````` `1996` `````` `````` ```1997 1998``` `````` if (h->divide_type == GF_DIVIDE_EUCLID) { gf->divide.w32 = gf_w4_divide_from_inverse; `````` ```1999 2000``` `````` gf->inverse.w32 = gf_w4_euclid; } else if (h->divide_type == GF_DIVIDE_MATRIX) { `````` `2001` `````` gf->divide.w32 = gf_w4_divide_from_inverse; `````` ```2002 2003``` `````` gf->inverse.w32 = gf_w4_matrix; } `````` `2004` `````` `````` `2005` `````` if (gf->divide.w32 == NULL) { `````` `2006` `````` gf->divide.w32 = gf_w4_divide_from_inverse; `````` ```2007 2008``` `````` if (gf->inverse.w32 == NULL) gf->inverse.w32 = gf_w4_euclid; } `````` ```2009 2010``` `````` if (gf->inverse.w32 == NULL) gf->inverse.w32 = gf_w4_inverse_from_divide; `````` `2011` `````` `````` ```2012 2013``` `````` if (h->region_type == GF_REGION_CAUCHY) { gf->multiply_region.w32 = gf_wgen_cauchy_region; `````` `2014` `````` gf->extract_word.w32 = gf_wgen_extract_word; `````` ```2015 2016``` `````` } `````` ```2017 2018``` `````` if (gf->multiply_region.w32 == NULL) { gf->multiply_region.w32 = gf_w4_multiply_region_from_single; `````` ```2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047``` `````` } return 1; } /* Inline setup functions */ uint8_t *gf_w4_get_mult_table(gf_t *gf) { gf_internal_t *h; struct gf_single_table_data *std; h = (gf_internal_t *) gf->scratch; if (gf->multiply.w32 == gf_w4_single_table_multiply) { std = (struct gf_single_table_data *) h->private; return (uint8_t *) std->mult; } return NULL; } uint8_t *gf_w4_get_div_table(gf_t *gf) { gf_internal_t *h; struct gf_single_table_data *std; h = (gf_internal_t *) gf->scratch; if (gf->multiply.w32 == gf_w4_single_table_multiply) { std = (struct gf_single_table_data *) h->private; return (uint8_t *) std->div; ``````